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Observation of topological transitions in interacting
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Topology, with its abstract mathematical constructs, often mani-
fests itself in physics and has a pivotal role in our understanding of
natural phenomena. Notably, the discovery of topological phases in
condensed-matter systems has changed the modern conception of
phases of matter1–5. The global nature of topological ordering, how-
ever, makes direct experimental probing an outstanding challenge.
Present experimental tools are mainly indirect and, as a result, are
inadequate for studying the topology of physical systems at a funda-
mental level. Here we employ the exquisite control afforded by state-
of-the-art superconducting quantum circuits to investigate topological
properties of various quantum systems. The essence of our approach
is to infer geometric curvature by measuring the deflection of quan-
tum trajectories in the curved space of the Hamiltonian6. Topolog-
ical properties are then revealed by integrating the curvature over
closed surfaces, a quantum analogue of the Gauss–Bonnet theorem.
We benchmark our technique by investigating basic topological con-
cepts of the historically important Haldane model7 after mapping the
momentum space of this condensed-matter model to the parameter
space of a single-qubit Hamiltonian. In addition to constructing the
topological phase diagram, we are able to visualize the microscopic
spin texture of the associated states and their evolution across a topo-
logical phase transition. Going beyond non-interacting systems, we
demonstrate the power of our method by studying topology in an
interacting quantum system. This required a new qubit architecture8,9

that allows for simultaneous control over every term in a two-qubit
Hamiltonian. By exploring the parameter space of this Hamiltonian,
we discover the emergence of an interaction-induced topological phase.
Our work establishes a powerful, generalizable experimental plat-
form to study topological phenomena in quantum systems.

Since the first observations of topological ordering in quantum Hall sys-
tems in the 1980s1,2, experimental studies of topological phases have mainly
been performed with a limited number of primarily indirect measure-
ment techniques. For instance, transport measurements are the predom-
inant tool used to study the quantum Hall effect, where interpretations10

are required to infer topological properties from the measurements. Con-
sequently, topological studies in quantum systems where transport mea-
surements cannot be carried out have remained elusive.

In principle, topological properties can be explored in any quantum
system where the Hamiltonian can be written in terms of a set of param-
eters. Topological phases are characterized by topological invariants, such
as the first Chern numberCh, whose discrete jumps indicate transitions
between different topologically ordered phases11,12. For a quantum system,
Ch is defined as the integral over a closed manifold S in the parameter
space of the Hamiltonian as

Ch: 1
2p

þ
S

B:dS ð1Þ

where B is the vector form of the Berry curvature13. As illustrated in
Fig. 1 and shown in Supplementary Information, B can be viewed as an

effective magnetic field with points of ground-state degeneracy acting
as its sources, that is, magnetic monopoles14. Using Gauss’s law for the
Berry curvature (magnetic field),Ch simply counts the number of degen-
erate energy eigenvalues (magnetic monopoles) enclosed by the para-
meter manifold S. Ch, which is invariant under perturbations to the
shape ofS, is a topological number that reflects a property of the man-
ifold of states as a whole and not a local property of parameter space.

In previous works, topological properties of highly symmetric quan-
tum systems have been measured15–17. However, since these earlier studies
relied on interference, these methods are not readily generalizable. To
circumvent this, Gritsev et al.6 proposed a general method to directly
measure the local Berry curvature. The underlying physics of their idea
is that motion in a curved space will be deflected from a straight trajec-
tory; in other words, curvature reveals itself as an effective force, anal-
ogous to a charged particle moving in a magnetic field experiencing the
well-known Lorentz force. Similarly, Gritsev et al. showed that in a region
of the parameter space with Berry curvature B, if we ‘move’ a quantum
system by changing a parameter of its Hamiltonian with rate jvj, then
the state of the system feels a force F given by

F!v|BzO v2
� �

, ð2Þ
where O indicates higher-order terms. This force leads to deviations of
the trajectory from the adiabatic path, which can be detected through
measurements of the observables of the system (Fig. 1). As long as the
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Figure 1 | Dynamical measurement of Berry curvature and Ch. In this
schematic drawing, brown arrows represent the ground states (adiabatic limit)
for given points on a closed manifold S (green enclosure, interrupted by an
opening for the sake of illustration) in the Hamiltonian’s parameter space, and
the blue arrows are the measured states during a non-adiabatic passage.
According to equation (2) in the main text, the Berry curvature B can be
calculated from the deflection from adiabaticity. Integrating B over S gives the
Chern numberCh, which corresponds to the total number of degeneracy points
(such as the brown point) enclosed.
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ramping of parameters is done slowly, but not necessarily adiabatically,
the deviation is directly proportional to B. Since the adiabatic limit is
generally hard to achieve, this relation has the important advantage of
needing only a moderately slow change of state and only requires that
the linear term dominates the response.

Direct measurement of B provides an alternative means to study topo-
logical phases that differs significantly from conventional approaches.
In condensed-matter systems an instantaneous realization of the entire
phase space manifold, such as the Fermi surface, is required. In our
approach, the local curvature of the space is dynamically ‘sensed’ and
topological invariants, such asCh, are inferred by integrating these mea-
surements. Implementing this dynamical procedure requires the ability
to continuously change the system Hamiltonian. In fully controllable
quantum systems, where this can be achieved, this method provides a
powerful means to probe topological properties.

To elucidate this dynamical method, we demonstrate a basic imple-
mentation in quantum circuits with superconducting qubits18–20. The
quantum state of a single qubit21 is equivalent to a spin-1/2 particle in a
magnetic field. Its Hamiltonian in the rotating frame can be written as

HS~{
B

2
H:s, ð3Þ

where s 5 (sx, sy, sz) are the Pauli matrices, and H 5 (HX, HY, HZ) is
analogous to a control magnetic field. Full control over the parameters
of this Hamiltonian is achieved by microwave pulses that control HX

and HY, and an applied flux through the qubit’s SQUID (superconduct-
ing quantum interference device) loop which controls HZ. We measure
Ch for spherical ground-state manifolds in H parameter space (Fig. 2).
We use h and w as spherical coordinates and consider the parameter tra-
jectory that starts at the north pole at t 5 0 and ramps along the w 5 0
meridian (HY 5 0) with constant velocity vh 5 dh/dt until it reaches the
south pole at final time t 5 Tf. To realize motion on a spherical manifold,
the control sequences of HZ and HX are chosen such that the control
magnitude jHj5 Hr is constant. In the adiabatic limit, the wavefunc-
tion would remain in the instantaneous ground state ofHS, that is, the
w 5 0 meridian on the Bloch sphere. For non-adiabatic ramps, instead,
a deviation from the meridian is observed, as shown in Fig. 2b. Here
the Bloch vector is measured at each point in time by interrupting the
ramp and performing state tomography. Note that this deviation is not
due to noise, but rather is the expected non-adiabatic response due
to local Berry curvature. For this trajectory, the force F takes the form

fw~
B

2
Hr syh isin h, and integrating over the resulting deflection (shaded

light red in Fig. 2b) gives Ch5 1 6 0.05. Given the symmetry of this
Hamiltonian, a line integral is sufficient for measuring the surface inte-
gral of Ch (refs 22, 23). A value of unity is expected, as the qubit ground
state has a degeneracy at H 5 0, corresponding to a single monopole
enclosed by the parameter sphereS. We demonstrate the robustness of Ch
by deforming the surface manifoldS (see Supplementary Information).

The generality of our approach allows us to connect our measure-
ments to certain condensed-matter systems and their core topological
features, such as topological phase transitions and the geometric wind-
ing of state vectors. This can be done by establishing a mapping from
the real or momentum space of the model condensed-matter system to
the parameter space of the controllable quantum circuit. We choose what
is perhaps the simplest theoretical model of topological behaviour, the
Haldane model7, to benchmark our approach. This model serves as a
foundation for other topological insulator models3–5. To show that the
quantum Hall effect could be achieved without a global magnetic field,
Haldane introduced a non-interacting Hamiltonian7 given by

HG kx,ky
� �

~BvF kxsxzkysy
� �

z m0{mtð Þsz ð4Þ
where vF is the Fermi velocity, kx, ky are the (momentum-space) coordi-
nates, m0 is the effective mass, and mt corresponds to a second-neighbour
hopping (tunnelling) in a local magnetic field. The key prediction of the
Haldane model is that if m0/mt . 1 the system is in a trivial insulating

phase, and otherwise in a topological phase. Using a confocal mapping
(see Supplementary Information), one can recast equation (4) into the
single-qubit Hamiltonian of equation (3). If we consider spherical man-
ifoldsS of radius Hr displaced from the origin in the z direction by H0,
then H0/Hr in the qubit system plays the same role as m0/mt in the Hal-
dane model.

In Fig. 3a we plot the results of this measurement, showing Ch as a
function of Hr and H0, which shows plateaux at values 0 and 1 separated
by a phase transition boundary line at Hr 5 H0. This transition can be
easily understood: when H0 , Hr the degeneracy at H 5 0 lies withinS
giving Ch5 1, whereas for H0 . Hr it lies outside S giving Ch5 0.

In the Haldane model, the topological and the trivial phase each has its
own signature spin texture in momentum space. Microscopic structure
of these phases can be revealed by the conventional adiabatic method.
We again consider spherical surfacesS and adiabatically ramp the con-
trol parameters to their final values on S. The resulting Bloch vectors
are then tomographically measured. With a confocal mapping (see Sup-
plementary Information), S can be mapped to the first Brillouin zone
(FBZ) of the honeycomb lattice. Therefore, the adiabatically measured
ground-state vectors on S can be depicted in the FBZ. Figure 3b, c
shows the results for two manifolds with H0/Hr 5 1.2 and 0, correspond-
ing to trivial and topological phases, respectively. By following the ori-
entation of the state-vector along any path starting at K and moving to
K9 (corners of the FBZ) and back to K, one can see that in the topological
case the state vector wraps around and makes one full rotation, while in
the trivial case it only tilts away from vertical and then returns, without
completing a rotation. These spin texture maps can also be used to extract
local Berry curvature. As shown in Fig. 3c, the resulting Ch from this
adiabatic method shows good agreement with the dynamical method
of measurement.

Some of the most fascinating topological phenomena in quantum sys-
tems emerge in the presence of interaction. Compared to non-interacting
systems, interactions impose a greater experimental challenge to study-
ing topological properties. Nevertheless, the method outlined here stands
out in its ability to provide insight into the topology of such systems. To
illustrate this, we consider the most basic unit of interaction and measure
Ch in a coupled two-qubit system. One major experimental challenge
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Figure 2 | Dynamical measurement of Ch. a, A simultaneous microwave
pulse HX(t) 5 Hr sin(pt/Tf) and detuning pulse HZ(t) 5 Hr cos(pt/Tf) are
applied to construct a parameter-space trajectory. The pulse sequence results in
a parameter-space motion along the w 5 0 meridian (HY 5 0 plane) on S.
The lower panel shows the pulse sequence applied to the system from
preparation to measurement. b, The state of the qubit during this ramp
(Hr/2p5 10 MHz and Tf 5 600 ns) is determined using tomography, and
shown (blue dots) on the surface of the Bloch sphere. The light red shading
shows the deflection integrated over, yielding Ch5 1 6 0.05.
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here is the need for full control over the entire parameter space of the
Hamiltonian. Here we achieve this by using a new design for our super-
conducting qubits, which includes the ability to continuously vary the
inter-qubit coupling strength g (refs 8, 9). The Hamiltonian of this sys-
tem in a frame rotating with the qubits is given by

H2Q~{
B

2
H0sz

1zH1
:s1zH2

:s2{g sx
1sx

2zs
y
1s

y
2

� �� �
ð5Þ

where 1 and 2 refer to qubit 1 (Q1) and qubit 2 (Q2), respectively, and the
biasing field H0 is now only applied to Q1. In this design, we can access all
regions of the seven-dimensional parameter space of this Hamiltonian.

We explore spherical manifolds with fixed (H0, jH1j, jH2j, g), analo-
gous to the single-qubit experiment. We perform experiments where both
H1 5 H2 5 Hr are ramped simultaneously with magnitude jHrj5 Hr

(Supplementary Information). The measured Ch is shown in Fig. 4a, c
for three distinct cuts though this parameter space.

We begin in Fig. 4a by exploring the simplest case, g 5 0, where the
qubits behave independently and the physics can be understood using
the single qubit results. Since only Q1 is subject to H0, itsCh changes by 1
through the transition H0 5 Hr. In contrast, in the absence of a biasing
field, Ch of Q2 remains equal to 1. As the qubits are independent, the
Ch of the system is simply the summation of the individual Ch, leading
to two phases with Ch5 1 and Ch5 2.

With the non-interacting limit of our system understood, we now focus
on the effects of interaction by examining regions of parameter space
where g ? 0. Considering manifolds with constant g/2p5 4 MHz, we
observe a new phase withCh5 0 (blue) when Hr=g, as shown in Fig. 4a.
To gain more insight into this new phase, we continuously vary g and
examine the evolution of the Ch5 0 region. As shown in Fig. 4c, this
phase appears when g < Hr, and monotonically expands as g increases.
These observations and the fact that this phase is absent when g 5 0
indicate that the Ch5 0 phase is indeed driven by interaction.

In certain limits, the three phases could approximately be character-
ized by the dominance of the global field (Ch5 2), of local fields (dis-
order;Ch5 1), and of interaction (Ch5 0). Interestingly, they also show
some signature entanglement entropies (see Supplementary Informa-
tion). The linear entropy of the states, averaged over the manifold, qual-
itatively hints towards a similar phase diagram in certain regions, where
the phase with lowestCh appears when the highest entanglement allowed
in the system has been reached. However, since Ch is a global property,
information about it cannot be deduced from the nature of any single
ground state. The interplay of fields and interactions provides hints to
anticipate the various topological phases in this system, but are incap-
able of capturing the entire underlying physics that leads to quantized
Ch values. Therefore, by reflecting topological attributes of the system,
Ch remains distinct and irreplaceable.

As the analogy with Gauss’s law suggests, a concrete understanding
of the phases can be obtained by considering how the singularities of
the system move in the parameter space. Given the relatively small size
of the Hilbert space, analytic solutions can be obtained and the phase
diagram can be predicted by calculating when points with degenerate
ground states cross the spherical manifold. The points of ground-state
degeneracy are located on the z axis of Hr space. In Fig. 4c, the small dia-
grams at right (A, B and C) correspond to the dots labelled A, B and C
on the main panel, where g is small. In this limit, H0 affects only one qubit,
and increasing it moves only one monopole past the surface (C). For D,
E and F where instead H0 is small, increasing g furthers the monopole
separation, eventually moving both monopoles outside the surface (F).
The results of a full analytical study are plotted in Fig. 4b, which shows
three distinct regions and their phase boundaries. There is a direct 0-to-2
transition when H0 5 0, but at finite values the system first goes through
the green Ch5 1 region. This latter behaviour is seen in Fig. 4c. The
dashed lines in Fig. 4a, c are from this analytic solution, which uses no
free parameters, and are in good agreement with the measurements. The
deviations are mainly systematic errors, due to crosstalk between sim-
ultaneous control pulses.

The generality of our method is aligned with Feynman’s original idea
of quantum simulation24, where a controllable quantum system is used
to investigate otherwise inaccessible quantum phenomena. In the absence
of other experimental approaches, the full controllability of our super-
conducting circuits will provide a unique platform for the exploration
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Figure 3 | Dynamic measurement of the topological phase diagram and
adiabatic visualization of phases. a, Dynamical determination of the phase
diagram. First Æsyæ was measured during ramps similar to those in Fig. 2a, and
then Ch was calculated. The dashed line is the expected phase boundary at
H0 5 Hr. The ramp speed was Tf 5 1,000 ns. Red dots show locations of the
states whose properties are shown in panels b and c. b, c, With adiabatic state
preparation, the state of the qubit was prepared and measured over a grid on
the surface of the parameter sphere and then mapped to the hexagonal
momentum-space plane. The ground states are presented as Bloch vectors,
whose colours indicate their Æszæ values (see key). H0/Hr 5 1.2 for b and
H0/Hr 5 0 for c. The grey lines show the FBZ of the honeycomb lattice and high
symmetry points K and K9 are marked. Each adiabatic sequence took
Tf 5 1,000 ns. d, The measured Ch from the adiabatic and dynamical (white
arrow in a) methods are plotted versus H0/Hr.
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of topological phases of more complex quantum systems, perhaps most
notably interacting spin systems where tantalizing evidence for fraction-
alization has been found6. Larger spin systems have smaller energy gaps,
and longer ramps will be needed to remain close to the ground-state
manifold. A path forward is therefore to improve coherence in multi-
qubit systems, research which is currently underway.
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